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Abstract 

Background:  Our previous study has demonstrated that the transcription of AchnKCS involved in suberin biosynthe-
sis was up-regulated by exogenous abscisic acid (ABA) during the wound suberization of kiwifruit, but the regulatory 
mechanism has not been fully elucidated.

Results:  Through subcellular localization analysis in this work, AchnbZIP29 and AchnMYB70 transcription factors 
were observed to be localized in the nucleus. Yeast one-hybrid and dual-luciferase assay proved the transcriptional 
activation of AchnMYB70 and transcriptional suppression of AchnbZIP29 on AchnKCS promoter. Furthermore, the 
transcription level of AchnMYB70 was enhanced by ABA during wound suberization of kiwifruit, but AchnbZIP29 tran-
scription was reduced by ABA.

Conclusions:  Therefore, it was believed that ABA enhanced the transcriptional activation of AchnMYB70 on AchnKCS 
by increasing AchnMYB70 expression. On the contrary, ABA relieved the inhibitory effect of AchnbZIP29 on transcrip-
tion of AchnKCS by inhibiting AchnbZIP29 expression. These results gave further insight into the molecular regulatory 
network of ABA in wound suberization of kiwifruit.
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Background
Fruits are often bruised or mechanically wounded dur-
ing the harvesting, transportation and storage pro-
cesses, which leads to the susceptibility to microbial 
infection and quality degradation. However, the dam-
aged surface of the postharvest kiwifruit would suberize 
to accumulate suberin and further form a healing layer, 
which can reduce the outflow of cell water and nutri-
ents and limit the invasion of pathogens [1–3]. Suberin 

layer was observed after wounding by means of fluores-
cence and staining microscopy and component analysis 
in kiwifruit [1]. Wounding-induced suberization also 
commonly occurs in potato tuber [4], Arabidopsis root 
[5] and postharvest tomato [6]. Suberin is a plant cell-
wall biopolymer composed of glycerol-based aliphatic 
polyester and the associated polymeric aromatics [7, 8]. 
It is biosynthesized initially from the acylation of fatty 
acids by long chain acyl-CoA synthetase (LACS), follow-
ing fatty acyl elongation controlled by fatty acid elonga-
tion enzyme complex (FAE), acyl reduction by fatty acyl 
reductase (FAR), fatty acyl oxidation by cytochrome 
P450 enzyme (CYP) and esterification of ω-hydroxy fatty 
acids and α, ω-dicarboxylic acids by glycerol 3-phosphate 
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acyltransferase (GPAT) [9]. The polymeric aromatics are 
biosynthesized from phenylpropanoid pathway [7].

Exogenous abscisic acid (ABA) could stimulate the 
accumulation of suberin with induced expression of 
genes encoding β-ketoacyl-coenzyme A synthases 
(KCSs) related to suberin synthesis [1, 10]. It was sug-
gested that ABA signaling stimulated the formation of 
a periderm including suberin in the apple and tomato 
fruit with defective cuticle formation [11, 12]. KCSs, as 
the components of FAE, catalyze the condensation of 
long-chain fatty acyl CoA and malonyl CoA to produce 
β-ketoacyl CoA with a carbon chain extension of two-
carbon unit (Fig. 1), participating in the synthesis of very 
long chain fatty acids (VLCFAs) that are the precursors 
of suberin biosynthesis. Resent research also reported 
that KCSs were associated with peridermal skin forma-
tion in kiwifruit [14]. The coding sequence (CDS) of 
AchnKCS (Achn030011) of 1512 bp was cloned from Acti-
nidia deliciosa ‘Xuxiang’ in our previous work [15]. The 
homology analysis of amino acid sequence displayed that 
the KCSs in plant were highly conserved, and AchnKCS 
had a high homology with AtKCS20 in Arabidopsis [16] 
and SlKCS11 in tomato [17]. In addition, the endoplas-
mic reticulum (ER) localization of AchnKCS protein was 
confirmed [15].

QsMYB1 (Quercus suber) was reported to target two 
QsKCS involved in suberin biosynthesis by Chip-seq 
assay [18]. Recently, it was revealed that AchnbZIP12 
responding to ABA signaling positively regulated the 
transcription of AchnKCS during wound suberization of 
kiwifruit [15]. AtMYB41 [19], AtMYB9 [12], AtMYB107 
[20] and AtMYB93 [21, 22] were demonstrated to be asso-
ciated with the regulation of suberin biosynthesis. The 
over expression of MYB92 in leaves of Nicotiana bentha-
miana significantly increased the transcript level of KCS1 
and the deposition of corresponding suberin monomers 
with carbon chain length of > 20 [23]. Similarly, the tran-
script levels of KCS2 and KCS20 were elevated in MYB39 
overexpression leaves of N. benthamiana, and KCS1 and 
KCS2 in MYB39 overexpression root of Arabidopsis [24]. 
Moreover, some of these transcription factors involved 

in suberization regulation have been shown to be ABA-
responsive, such as AtMYB41 [19], AchnbZIP12 [15] and 
AchnMYB107 [25]. Besides, ABA signaling cascades was 
suggested to play a mediating role in suberin biosynthesis 
regulated by MYB39 in the Arabidopsis root endodermis 
[24].

Therefore, based on our previous report and related lit-
eratures, the present study was to explore the regulatory 
mechanism of ABA in inducing AchnKCS (Achn030011) 
expression during suberin deposition by investigat-
ing the transcriptional control of transcription factors 
on AchnKCS. AchnbZIP29 and AchnMYB70 transcrip-
tion factors were speculated and verified to regulate the 
transcription of AchnKCS in respond to ABA-stimulated 
wound suberization. It was expected to give further 
insight into the molecular regulatory network of ABA in 
promoting wound suberization of kiwifruit.

Methods
Fruit treatment
Kiwifruit (Actinidia deliciosa ‘Xuxiang’) were harvested 
at commercial maturity with the uniformity of shape and 
size from a commercial orchard in Fuyang District, Hang-
zhou, China. Treatment was based on Han et al. [15]. The 
surface was sterilized with 0.5% (v/v) NaClO solution for 
3 min, washed with sterile water and air-dried naturally. 
Artificial wound was made by cutting the fruit into halves 
lengthwise. Nighty halves were treated with 0.5 mmol L− 1 
ABA (≥ 90%, Aladdin Industrial Inc., China) and another 
90 halves were treated with sterile water (control) by 
vacuum infiltration. Afterwards, fruit halves were stored 
in a sterile incubator at 20 °C and 85% relative humidity 
for wound healing under darkness. Suberized tissue was 
separated from the scarred outmost layer of the wound 
surface after incubating for 2, 3 and 4 days and stored at 
− 80 °C until further analysis.

RNA extraction
The cetyltrimethylammonium bromide (CTAB) 
method was carried out to extract the total RNA 

Fig. 1  Catalysis and substrate specificity of KCSs in the elongation steps of carbon chains involved in the synthesis of VLCFAs in Arabidopsis [13]. 
Numbers represent the number of carbon units of VLCFAs
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[26]. The implementation details referred to Han 
et  al. [15]. Briefly, 2% CTAB extraction buffer and 
LiCl solution (12 mol L− 1) were applied to extract 
and denature the RNA on the first day. On the sec-
ond day, the SSTE buffer (containing 1.0 mM EDTA, 
10 mM Tris-HCl pH 8.0, 0.5% (m/v) SDS and 1.0 M 
NaCl), chloroform and ethanol were added to dis-
solve, purify and precipitate the RNA, respectively. 
Finally, wash the RNA pellet with pre-chilled 75% 
ethanol for twice and dissolve the RNA pellets again 
using RNase-free water. The quality of the RNA sam-
ples was measured using a NanoDrop 2000 (Thermo 
Fisher Scientific, USA).

DNA extraction
The total DNA was extracted by implementing the 
CTAB method [27]. The implementation details 
referred to Han et  al. [15]. Briefly, 2% CTAB buffer, 
the solution of phenol: chloroform: isoamylol (25:24:1) 
and the solution of chloroform: isoamylol (24:1) were 
applied to extract and purify the DNA. After centri-
fuging, NaAc solution and isopropanol were added to 
precipitate the DNA. Afterwards, wash and dissolve the 
DNA precipitate respectively with 75% (v/v) ethanol 
and TE buffer. The quality of DNA samples was meas-
ured by a NanoDrop 2000.

Molecular cloning and amino acid sequence homology
The gene sequence of transcription factor AchnbZIP29 
(Achn340751) and AchnMYB70 (Achn117821) were 
determined based on the Cornell University kiwifruit 
database (http://​bioin​fo.​bti.​corne​ll.​edu/​cgi-​bin/​kiwi/​
home.​cgi). The cloning conditions were according to 
Han et al. [15]. Based on the primers in Supplementary 
Table  1 (AchnbZIP29-Full and AchnMYB70-Full), both 
genes of AchnbZIP29 and AchnMYB70 were cloned 
from reverse transcribed cDNA. And the promoter of 
AchnKCS was cloned from the extracted total DNA using 
the corresponding AchnKCS-Pro primers. After link-
ing the amplified product with pEASY-T1 simple vector 
and transferring it into Escherichia coli, the test of white 
spot screening was carried out to obtain the recombinant 
plasmid.

The cloned sequence was compared with the proteins 
of Arabidopsis thaliana on NCBI BLAST software, Then 
the sequences with the high identified score were down-
loaded and multiple sequence alignment were further 
carried out by means of DNAMAN8 (Lynnon Biosoft 
Corporation, USA). The corresponding phylogenetic tree 
was mapped using MEGA7 software (www.​megas​oftwa​
re.​net/).

Subcellular localization of AchnbZIP29 and AchnMYB70
After cloning the coding sequence (CDS) of AchnbZIP29 
and AchnMYB70, the sequence with no stop codon was 
amplified and inserted into the 1300-35S-eGFP vector. 
The obtained AchnbZIP29-GFP and AchnMYB70-GFP 
fusion expression vectors were respectively transferred 
into Agrobacterium strain. The preparation of the infec-
tion buffer of Agrobacteria and the inoculation of tobacco 
(Nicotiana benthamiana) leaves were according to Han 
et  al. [15]. After inoculation for 48 h, a confocal micro-
scope (Leica SP8, Leica Microsystems Co., Germany) was 
used to observe the GFP fluorescence of the leaf discs at 
488 nm excitation.

Yeast one‑hybrid assay (Y1H)
In order to test the protein-DNA interaction of Achn-
bZIP29, AchnMYB70 and AchnKCS promoter, Y1H assay 
was carried out according to the Matchmaker® Gold 
Yeast One-Hybrid Library Screening System (Cat. No. 
630491, TaKaRa, Dalian, China). Auto-activation analy-
sis of AchnKCS promoter was conducted at first and the 
minimum inhibitory concentration of aureobasidin A 
(AbA, a yeast toxin) was determined. The recombinant 
plasmid of AchnKCS-Pro-pABAi was transferred into 
Y1H Gold through PEG/LiAc after linearizing. The full-
length regions of AchnbZIP29 and AchnMYB70 were 
cloned into pGADT7 vector (AD) via restriction enzyme 
cutting sites (EcoRI and XhoI sites, SmaI and SacI sites, 
respectively). Transformed Y1H Gold harboring both 
AchnKCS-Pro-pABAi and AchnbZIP29-pGADT7 or 
AchnMYB70-pGADT7 were cultured to test the interac-
tion on SD/−Leu with AbA at 30 °C for 3 days. Y1H Gold 
co-transformed with p53-promoter and pGADT7-Rec 
were used as positive control. Y1H Gold co-transformed 
with AchnKCS-Pro-pABAi and empty pGADT7 were 
used as negative control.

Dual luciferase assay
Dual-luciferase assay was carried out to determine the 
trans-activation role of AchnbZIP29 and AchnMYB70 
on target AchnKCS promoter. The implementation details 
referred to Tao, et  al. [28]. The promoter sequence of 
AchnKCS was inserted into LUC vector (pGreen II 0800-
LUC, cut by HindIII and BamHI). The CDSs of Achn-
bZIP29 and AchnMYB70 were amplified and inserted 
into pGreen II 0029 62-SK vector (SK) (cut by HindIII 
and BamHI), respectively. The ClonExpress II One Step 
Cloning Kit (C112–01, Vazyme, China) was applied to 
drive the connection reactions. The procedures of Agro-
bacterium tumefaciens transformation and the prepara-
tion of the infection buffer of Agrobacteria were according 
to Han et  al. [15]. Afterwards, the Agrobacteria culture 
mixtures of respectively empty pSK, AchnbZIP29-pSK 

http://bioinfo.bti.cornell.edu/cgi-bin/kiwi/home.cgi
http://bioinfo.bti.cornell.edu/cgi-bin/kiwi/home.cgi
http://www.megasoftware.net/
http://www.megasoftware.net/
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or AchnMYB70-pSK and AchnKCS promoter-pLUC (v/v 
10:1) were prepared to infect tobacco (Nicotiana bentha-
miana) leaves with needleless syringes. A total of three 
tobacco plants were used and two leaves of each plant 
were selected for infection. That was six biological repli-
cates were considered to determine the results. After 72 h 
for infiltration, the Dual-Luciferase Reporter Assay Sys-
tem (E1910, Promega, USA) with Modulus Luminometers 
(Promega, USA) was employed to detect the activities of 
firefly luciferase (LUC) and renilla luciferase (REN).

Real‑time quantitative reverse transcription PCR analysis 
(qRT‑PCR)
The first-strand cDNA was obtained by RNA reverse 
transcription according to the manufacturer’s instruc-
tions of PrimeScript™ RT reagent Kit (Perfect Real Time, 
TaKaRa Bio Inc., China). The CFX96-TouchTM Deep 
Well Sequence Detection system (Bio-Rad Laboratories, 
Inc. CA, USA) was applied to detect gene transcription 
levels with SYBR® Premix Ex Taq™II (TliRNaseH Plus, 
TaKaRa Bio Inc., China). Each gene was analyzed in trip-
licate and Actin was used as reference gene. The relative 
expression levels of genes were calculated by the 2-△△CT 
method [29] and presented in multiples relative to the 
initial value without any treatment (normalized to 1).

Statistical analysis
Each experiment included at least three biological rep-
licates. Data represented the mean value minus or plus 
standard deviation (± SD). SPSS software (version 20.0, 
IBM Corporation, New York, America) was used to ana-
lyze the difference significance by Least significant dif-
ference (LSD) test and Origin 9.0 software (OriginLab 
Corporation, Massachusetts, America) for mapping. The 
difference was considered to be statistical significance 
when p ≤ 0.05 or 0.01, and expressed with different letters 
or “*”, “**” in figures.

Results
Analysis of AchnKCS promoter sequence
Based on the total DNA template of kiwifruit, a 709 bp 
sequence of AchnKCS promoter was successfully 

amplified by the primer of AchnKCS-Pro-F/R in Sup-
plementary Table  1. The sequence analysis through 
PlantCARE software (http://​bioin​forma​tics.​psb.​ugent.​
be/​webto​ols/​plant​care/​html) showed that cis-acting 
elements of ABRE (ABA responsive element), G-box, 
MBS and MRE were contained (Table  1). ABRE was 
considered to be specifically recognized by bZIP tran-
scription factors and involved in ABA response, while 
G-box was supposed as coupling of ABRE [30, 31]. 
MBS and MRE were the binding sites of MYB tran-
scription factors [32].

Amino acid sequence homology
Through the promoter sequence analysis by PlantCARE 
and bioinformatics searching by NCBI BLAST soft-
ware, a bZIP (Achn340751) and an MYB (Achn117821) 
transcription factor were inferred to be downstream 
responses of ABA signaling and be associated with 
suberin biosynthesis based on the involvement of their 
close homologs in ABA responding and mechanical 
stress [33–38]. Using cDNA as template, the CDS of 
Achn340751 and Achn117821 were cloned. Furthermore, 
the BLAST online software was used to analyze the 
sequence homology from the NCBI database. Based on 
its homology with Arabidopsis transcription factors pre-
sented as phylogenetic tree by means of DNAMAN8 and 
MEGA7 software in Fig. 2, they were temporarily desig-
nated as AchnbZIP29 and AchnMYB70. And it showed 
that AchnbZIP29 and AchnMYB70 respectively belonged 
to Group I of bZIP transcription factors and R2R3-MYB 
22 subgroup, which involved in the regulation of fatty 
acid biosynthesis [39–41].

Subcellular localization
In order to speculate the functional mechanism, the 
subcellular localization of both transcription factors 
was determined by observing the fluorescence signal 
of GFP based on the fusion expression vectors of the 
reporter gene GFP with AchnbZIP29 or AchnMYB70. 
The result displayed that compared with the green 
fluorescence appearing in the whole cell of the hollow 
GFP vector, the GFP green fluorescence signal of the 

Table 1  Bioinformatic analysis of AchnKCS promoter

Note: Position represents the cis-acting element is counted from the position of ATG​

Element Description Sequence (5′-3′) Position

ABRE cis-acting element involved in the abscisic acid responsiveness TAC​GTG​ − 1025(+)

ABRE cis-acting element involved in the abscisic acid responsiveness TAC​GTG​ − 1498(−)

G-Box cis-acting regulatory element involved in light responsiveness CAC​GTT​ − 1587(−)

G-Box cis-acting regulatory element involved in light responsiveness CAC​GTC​ − 961(−)

MBS MYB binding site involved in drought-inducibility CAA​CTG​ − 1203(−)

MRE MYB binding site involved in light responsiveness AAC​CTA​A − 999 (+)

http://bioinformatics.psb.ugent.be/webtools/plantcare/html
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
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fusion expression vector with the AchnbZIP29 or Ach-
nMYB70 appeared specifically in the nucleus (Fig.  3). 
It indicated that AchnbZIP29 and AchnMYB70 were 
located in the nucleus, conforming their functional 
characteristics of regulating gene transcription.

Interaction between AchnbZIP29, AchnMYB70 
and AchnKCS promoter
Y1H was carried out to investigate whether Achn-
bZIP29 and AchnMYB70 can interact with AchnKCS 
promoter. Firstly, the self-activation test showed that 
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Fig. 2  Amino acid sequence phylogenetic analysis of AchnbZIP29 and AchnMYB70 from kiwifruit and bZIP and MYB members from Arabidopsis. 
The amino acid sequences were obtained from the Cornell University kiwifruit database and NCBI database, respectively. The accession numbers 
were indicated in the brackets
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the yeast transformed with AchnKCS-Pro-pABAi 
cannot grow on the medium containing 100 ng mL− 1 
AbA (Fig.  4). Subsequently, Y1H displayed that the 
positive control strain (AD-Rec-p53 + p53 promoter, 
not shown) and Y1HGold transformed with Achn-
bZIP29 + AchnKCS Pro, and AchnMYB70 + AchnKCS 
Pro can grow in the medium with 100 ng mL− 1 AbA 
and no leucine (−Leu) (Fig. 4), which verified the inter-
action of individually AchnbZIP29 and AchnMYB70 
with AchnKCS promoter.

Besides, in order to further clarify the regulatory 
effect of AchnbZIP29 and AchnMYB70 on AchnKCS, a 
dual luciferase assay was applied. It presented that Ach-
nMYB70 can significantly enhance the transcriptional 
activity of AchnKCS promoter, and the ratio of LUC/
REN was 2.32 times that of the control (SK) (Fig. 5). In 
contrast, AchnbZIP29 negatively regulated the tran-
scriptional activity of AchnKCS promoter, and its LUC/
REN ratio was only 0.44 that of SK (Fig. 5).

Effect of exogenous ABA on the transcription levels 
of AchnbZIP29 and AchnMYB70
The relative transcription levels of AchnbZIP29 and 
AchnMYB70 in ABA-stimulated suberizing tissue 
of kiwifruit were analyzed by qRT-PCR. As shown 
in Fig.  6, the transcription level of AchnbZIP29 was 

Fig. 3  Subcellular localization of AchnbZIP29 and AchnMYB70 indicated by GFP green fluorescence in Nicotiana benthamiana epidermal cells. 
Bars = 50 μm

Fig. 4  Yeast one-hybrid analysis on interaction between AchnbZIP29, 
AchnMYB70 and AchnKCS promoter
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reduced by exogenous ABA and decreased to 0.45 of 
the initial value (normalized to 1) on the third day after 
treatment. On the contrary, the transcription level of 
AchnMYB70 was significantly up-regulated by ABA. 
From the second day after treatment, the transcription 
level of AchnMYB70 in the suberizing tissue increased 

significantly and reached the maximum abundance on 
the third day, which was 2.1 times of the initial control 
value. The difference in relative transcript abundance 
induced by ABA further illustrated that AchnbZIP29 
and AchnMYB70 were ABA signal-responsive tran-
scription factors.

Fig. 5  The transcriptional effect of AchnbZIP29 and AchnMYB70 on the promoter of AchnKCS by dual-luciferase assay. The LUC/REN value for the 
empty vector (SK) was set as 1

Fig. 6  Relative transcription levels of AchnbZIP29 and AchnMYB70 during wound suberization of kiwifruit. “**” represents significant difference at 
p ≤ 0.01
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Discussion
Abscisic acid (ABA) is a stress resistance hormone in plant, 
which is involved in a variety of biotic and abiotic stresses 
[42, 43]. Relevant studies in recent years have shown that 
ABA promoted suberin accumulation in Arabidopsis root 
[5, 43], potato tuber [4, 44], tomato fruit [6, 45] and kiwi-
fruit [1]. Wounding also induced the increase of ABA level 
in potato tuber [4]. The increased expression of genes in 
suberin pathway with an ABA-dependent manner in russet 
apple further suggested the important role of ABA signal-
ing in suberin development [11]. Moreover, the inhibition 
of ABA biosynthesis by fluridone was reported to block 
the wound suberization in potato tuber [4] and tomato 
fruit [6]. ABA has been verified to be a positive regulator 
in suberin deposition and confirmed the role in wound 
suberization of kiwifruit [1, 6, 46]. In detail, ABA treat-
ment could induce suberin precursor VLCFAs accumu-
lation during wound suberization [4, 47, 48]. In VLCFAs 
biosynthesis, KCSs are the rate-limiting enzymes in the 
chain elongation of fatty acids [49]. It was further found 
that the KCS gene was significantly induced in response to 
ABA-stimulated suberization of kiwifruit [15].

The promoter sequence of ABA-responsive genes gen-
erally has a conserved cis-acting element, namely ABA-
responsive element (ABRE; PyACG​TGG​/TC) [50, 51]. 
Transcription factors of bZIP family in plant could inter-
act with cis-acting elements containing ACGT sequence 
to participate in ABA signaling [52–54]. In Arabidop-
sis, it has identified eighty bZIP transcription factors, 
which are divided into 13 groups based on the similar-
ity of their basic regions and other conserved motifs 
[55]. It was reported that AchnABF2 and AchnbZIP12 
in Group A responding to ABA activated the transcrip-
tion of AchnFHT and AchnKCS involved in suberin bio-
synthesis, respectively [15, 25]. In this work, AchnbZIP29 
was cloned from kiwifruit and the analysis of amino 
acid sequence showed that it was classified into Group 
I. The bZIPs of Group I in Arabidopsis were likely to be 
involved in the development of vascular tissue and cell 
wall [56]. AchnbZIP29 presented high homology with 
AtbZIP29. Related research revealed that ABA decreased 
the expression of AtbZIP29 in guard cells [57]. Similarly, 
the transcription level of AchnbZIP29 was down-regu-
lated by ABA during wound suberization in this work. It 

Fig. 7  The model of the transcriptional regulation of AchnbZIP29, AchnMYB70 and AchnbZIP12 on AchnKCS responding to ABA during wound 
suberization of kiwifruit. Note: AchnbZIP12 and AchnMYB70 induced to increase AchnKCS transcription through interacting with cis-acting element 
(ABRE/G-box and MBS/MRE). The down-regulated transcription of AchnbZIP29 relieved the inhibitory effect of AchnbZIP29 on AchnKCS. And KCS 
as the key component of FAE complex catalyzed the chain elongation of fatty acyl-CoA (Cn ≥ C16) to fatty β-ketoacyl-CoA (C(n + 2)), further 
producing VLCFAs that were precursors of suberin
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was also speculated that AtbZIP29 regulated the expres-
sion of CYP707A3 and CYP707A1 which were two key 
enzymes involved in ABA catabolism [37]. Accordingly, 
it was inferred that AchnbZIP29 negatively correlated 
with the expression of ABA-responsive genes and it was 
likely to participate in the regulation of wound suberiza-
tion on the cell wall, but its target gene was possible not 
only AchnKCS.

However, cis-acting element alone was not sufficient 
for regulating the transcription of ABA-responsive 
genes. The interaction between AREB (ABRE bind-
ing proteins) and ABRE required the participation of 
coupling elements [58]. Considered as a coupling ele-
ment of ABRE motif, the G-box element was reported 
to play roles in regulating gene expression under vari-
ous environmental stresses [59]. Certain bZIP tran-
scription factors contained motifs that recognized and 
bound to G-box element [30, 59]. In this work, the 
cloned AchnKCS promoter region contained not only 
two ABRE elements, but also two G-box elements. It 
allowed us to further determine that bZIP transcription 
factors played an important regulatory role in the ABA-
promoted suberization.

MYB transcription factor family has a wide range of 
function diversity, including the regulation of suberin 
biosynthesis [12, 19, 21]. In this work, AchnMYB70 was 
found to activate the AchnKCS promoter and positively 
regulate the AchnKCS transcription. Most MYB pro-
teins bound to one or more cis-acting elements (MBS/
MRE) with the conserved sequence of CNGTT(A/G) or 
C(G/T)T(A/T) GTT(A/G) [32]. It showed that Achn-
MYB70 had high homology with AtMYB70, AtMYB73 
and AtMYB44, which were involved in secondary 
metabolism and resisting biotic and abiotic stress in 
Arabidopsis [33, 60, 61]. The lipid content in seeds 
and leaves of transgenic Arabidopsis overexpressing 
the GmMYB73 (Glycine max) gene was significantly 
increased [40]. It was also reported that osmotic stress 
induced the transcription of AtMYB30 and AtMYB4, 
which was associated with the FAE complex and con-
tributed to the synthesis of VLCFAs [62]. In addition, 
AchnMYB107 and AchnMYB41 were induced by exog-
enous ABA during wound suberization of kiwifruit and 
were demonstrated to activate the transcription of Ach-
nFHT, AchnFAR and AchnCYP86A1 that were involved 
in suberin biosynthesis [25, 46, 63]. In this study, the 
transcription level of AchnMYB70 was also up-regulated 
by exogenous ABA treatment and was proved to possi-
bly have an activating effect on AchnKCS transcription 
during wound suberization of kiwifruit.

The transcription of a gene may be comprehensively 
regulated by multiple transcription factors, and the inter-
action between transcription factors may jointly play a 

role in the transcriptional regulation of the target genes. 
In this work, any interaction or other cooperative regu-
lation between the transcription factors that can inter-
act with the AchnKCS promoter, including AchnbZIP29, 
AchnMYB70 and AchnbZIP12 we reported previously, 
still needed to be further studied.

Conclusions
In conclusion, the present work explored a potential 
regulatory pathway of ABA on AchnKCS involved in 
suberin biosynthesis (Fig.  7). AchnKCS promoter was 
activated by the interaction with AchnMYB70 but sup-
pressed by the interaction with AchnbZIP29. The tran-
scription level of AchnMYB70 was induced by ABA, 
but AchnbZIP29 expression was reduced by ABA. 
Therefore, ABA played a key role in the transcriptional 
activation of AchnKCS possibly by up-regulating Ach-
nMYB70 expression and down-regulating AchnbZIP29 
expression.
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